SPHERICALLY SYMMETRIC STEFAN PROBLEM WITH
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A nonlinear integrodifferential equation is derived for the temperature distribution in the re-
gion under study. The determination of the time for the unknown boundary to reach a given
position is reduced to a quadrature.

The method of successive approximations is used in [1, 2] to solve the two-dimensional and axisym-
metric Stefan problem without initial conditions. We develop a method for solving the spherically sym-
metric Stefan problem with a boundary condition of the third kind.

After introducing appropriate dimensionless variables the problem can be formulated mathematically
in the form '
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when D = {x, t; 1 <x <Aft); 0 <t < «}is an open domain in which the solution of the problem must be con-
structed. ‘

Problem (1)-(5) corresponds fo an ice covered sphere whose surface is cooled by convection, with
the ambient temperature at zero time equal to the temperature of the phase transition. The required func-
tions are the dimensionless temperature U(x, t) and the position of the phase transition boundary x = A(t).

The solution of problem (1)-(5) is constructed as in [2].
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Fig. 1. Position of phase transition boundary: H = 0.05. a: 1)
g=0.8 2)0.6 3)0.4; 4)0.2; a=02 b: 1) ¢ = 0.2; 2) 0.4;

3) 0.6; 4) 0.8; 5) 1.0; g =0.8.

=N

NN

% 4

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 4, pp. 701-704, April, 1974. Origi-
nal article submitted April 2, 1973.

© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming,
recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $15.00.

486



TABLE 1. Time to Build Up a Layer of Ice on a Convectively Cooled Spherically Symmetric Surface

N

% b " 1,05 1,1 s 1,15 ‘ 1,2 { 1,25 \ 1,3 133

o=0,4} 0,05 0,185045 | 0,407337 0,647545 0,907327 1,187965 | 1,490742 1,816929 | 2,167785

B=-0,8] 0,0125 [0,199715 | 0,411239 | 0,660886 | 0,920019 | 1,199975
0.00625 [0,202073 | 0,423425

0,025 ]0,194953 | 0,416822 0,656787 0,916208 1,196429 | 1,498764 1,824507 | 1,174931

0,05  [0,166864 | 0,369850 0,590096 0,829231 1,088577 | 1,369442 1,673125 | 2,000913

a=0,6| 0,025 {0,176266 | 0,378426 0,598145 0,836749 1,005866 | 1,375914 1,679102 | 2,006420

0,0125 |0.181354 | 0,383657 | 0,603338 | 0,841820 | 1,100448
8=0,6 0,00625 |0,183658 | 0,385767

0,0125 [0,142401 { 0,302340 | 0,476108 | 0,664014 | 0,869895
3=0,6] 0,00625 |0,144679 | 0,304440 i

The problem is solved
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where the operators A and B act on the function Ux, A) according to the rule
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0,05 0,129314 | 0,290123 0,464524 0,653995 0,859666 | 1,082644 1,324033 | 1,584932
a=0,8) 0,025 |0,139175 | 0,298205 0,472178 0:661210 0,866412 | 1,088931 1,329865 | 1,590329 -
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The integrodifferential equation (6) can be solved by the method of successive approximations, and
then by using (7) the time for a layer of ice of thickness A to build up on the surface of the sphere can be

determined.

The iteration scheme has the form
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The zero approximation corresponds to the case of an infinitely small specific heat of the medium.
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The criterion for the final iteration was the condition Uy x, t)—Uk(x, t)l < 1074 uniformly in domain
D for @ = 0.2, 0.4, 0.6, 0.8, 1.0; g =0.2, 0.4, 0.6, 0.8, There were no more than four iterations. The

character of the change A(t) for a change in the mesh size H = 0.05, 0,025, 0.0125, 0,00625 is shown in
Table 1.

Figures 1a and b show the solutions for various values of ¢ and g and H = 0.05.

In conclusion we note that Eqs. (6) and (7) are more convenient than (1)-(5) for solving the problem
in the finite difference formulation.
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